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Abstract
Molecule graph editing has become a powerful paradigm for opti-
mizing chemical compounds in drug discovery. Existing methods
overlook the invariant structure-property relationships, and rely on
variable correlations that shift across different instructions, thereby
failing to generalize to out-of-distribution (O.O.D.) scenarios. To
overcome the weakness of existing work, in this paper we propose
to capture and utilize the invariant factors in order to achieve gener-
alizable molecule graph editing under distribution shifts. However,
this problem remains challenging, given that the invariant and
variant factors are deeply entangled within the editing models. To
tackle this challenge, we proposeMoFE, a disentangled graph large
language model for molecule graph editing that handles editing
instructions under distribution shifts via disentangling invariant
factors that govern editing-relevant properties. Specifically, we pro-
pose a disentangled graph projector with invariance loss that encodes
molecular graphs into disentangled latent factors, with an invari-
ance loss that ensures consistency across paraphrased prompts
with the same objective. Then, we enhance the LLM with a factor-
aware LoRA mixture-of-experts, where each expert is associated
with a distinct latent factor. Additionally, we introduce a factor dis-
entanglement loss weighting strategy that adaptively assigns higher
weights to expert-factor pairs that perform well on relevant editing
tasks. The proposed MoFE model promotes joint disentanglement
between experts and latent factors, reinforcing their alignment
and preventing collapse. Experiments on a representative bench-
mark demonstrate that MoFE is able to achieve superior O.O.D.
generalization performance in molecule graph editing.
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1 Introduction
Molecule graphs, where atoms and bonds form structured, hetero-
geneous relations, represent a critical class of web-related graphs
that are increasingly analyzed, queried, and optimized through
web-based platforms. With the rapid growth of open molecular
repositories such as PubChem, ChEMBL, and MoleculeNet, mole-
cule graph reasoning has become a core component of web-based
drug discovery pipelines, enabling large-scale querying, representa-
tion learning, and property prediction. In this emerging landscape,
molecule graph editing [13–15], the task of modifying molecu-
lar structures according to natural language instructions, offers a
powerful paradigm for controllable compound optimization and
interactive molecular design [21, 23].

Recent studies [7, 15] explored the integration of large language
models (LLMs) [1, 6, 9, 24] into molecule editing workflows. Owing
to their capacity to interpret and execute complex natural-language
instructions, LLMs provide a promising interface for controllable
and versatile molecule editing. Current LLM-based molecule editing
methods [7, 15] heavily rely on the in-distribution (I.D.) assumption,
i.e., the training and testing data are independently drawn from
an identical distribution. However, distribution shifts of molecule-
instruction data frequently occur in real world scenarios. For exam-
ple, instructions may cover unseen molecule graph properties, and
instruction syntax differences can create new molecule-instruction
combinations. Existing approaches overlook the invariant structure-
property-semantic patterns and tend to rely on correlations that
are variant across different instructions, resulting in the failure of
generalization to unseen molecule graph editing scenarios.

To tackle this issue, we study the problem of molecule graph
editing in out-of-distribution (O.O.D.) scenarios by discovering
and utilizing invariant patterns, namely structural and property-
based factors that remain stable across distribution shifts. This prob-
lem poses several key challenges: (1) How can we extract editing-
relevant, instruction-invariant latent factors from molecular graphs
that reflect underlying structure–property relationships? (2) How
can these factors be coupled with language representations so that
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instructions influence molecular edits through stable structural se-
mantics rather than surface patterns? (3) How can we ensure these
factors interact in a complementary yet non-interfering manner
during model training, enabling modular specialization without
collapse?

To address these challenges, we proposeMoFE, a molecule graph
editing LLM designed for robust generalization across diverse edit-
ing instructions. The proposed MoFE model extracts latent factors
from graph structures and performs modular reasoning through
a mixture-of-experts architecture. Specifically, we propose a dis-
entangled graph projector with invariance loss that extracts editing-
relevant latent factors from molecular graphs and aggregates them
into graph tokens. These tokens are incorporated into the LLM
input, while an invariance loss ensures consistency across para-
phrased prompts describing the same editing objective. Building
on this foundation, we enhance the LLM with a factor-aware LoRA
mixture-of-experts, where each expert is conditioned on a distinct la-
tent factor. Additionally, to promote stable and specialized expert be-
havior, we introduce a factor disentanglement loss weighting strategy
that prioritizes training on data most relevant to each expert–factor
pair, thereby encouraging targeted optimization and reducing inter-
ference across experts. Experiments show that MoFE significantly
outperforms baselines in O.O.D. settings, demonstrating its effec-
tiveness in learning generalizable molecule editing behavior under
distribution shifts.

Our contributions are summarized as follows:

• We are the first to study the problem of molecule graph editing
under distribution shifts, to the best of our knowledge.

• We propose a disentangled graph LLM for O.O.D. molecule
graph editing (MoFE), which explicitly disentangles molecular
structures and aligns them with instruction semantics.

• We develop a modular architecture that combines a disentan-
gled graph projector for extracting stable editing-relevant fac-
tors, a factor-aware LoRA mixture-of-experts for factor-specific
reasoning, and a loss weighting strategy that promotes expert
specialization and training stability.

• We conduct extensive experiments on O.O.D. molecule editing
tasks, demonstrating that MoFE achieves significant improve-
ments over state-of-the-art baselines.

2 Problem Formulation and Notations
This section formalizes the problem of molecule graph editing. We
first introduce its general definition and objective, and then extend
it to the O.O.D. setting, which motivates our approach.

Molecule Graph Editing. LetG denote the space of valid molec-
ular graphs, and X the space of editing instructions. Given an input
molecule graph 𝐺src ∈ G and an instruction 𝑋 ∈ X, the molecule
graph editing task aims to output a molecule graph 𝐺 tgt ∈ G, that
(1) semantically aligns with the intent described by 𝑋 , (2) satisfies
chemical validity, and (3) introduces minimal structural changes to
𝐺src. Formally, the editing process is modeled as a parameterized
mapping:

𝐺 tgt = F𝜃 (𝐺src, 𝑋 ), (1)

where F𝜃 is a parameterized editing model. The alignment between
the generated molecule and the instruction can be measured by a

semantic matching function A(𝐺 tgt, 𝑋 ), while the modification de-
gree can be quantified by a molecular distance metric Δ(𝐺src,𝐺 tgt).
The overall objective is thus to maximize instruction alignment
while minimizing unnecessary structural deviation:

F ∗
𝜃
= arg max

F𝜃
E(𝐺src,𝑋 )∼𝑃data

[
A(𝐺 tgt, 𝑋 ) − 𝜆 Δ(𝐺src,𝐺 tgt)

]
, (2)

where 𝜆 balances semantic fidelity and molecular similarity.
Molecule Graph Editing in O.O.D. Setting. Consider the

training and testing graph datasets, Dtrain = {(𝐺 src
𝑖 , 𝑋𝑖 )}𝑁

𝑡𝑟

𝑖=1 and
Dtest = {(𝐺 src

𝑖 , 𝑋𝑖 )}𝑁
𝑡𝑒

𝑖=1 sampled from distributions 𝑃train and 𝑃test
respectively. In realistic molecule editing scenarios, these distribu-
tions often differ due to two major types of shifts:
• Instruction shift: linguistic variations, paraphrases, or unseen
syntactic patterns in textual editing instructions that were not
observed during training.

• Property shift: novel or unseen optimization objectives that
differ from those in Dtrain.

Formally, the task operates under out-of-distribution (O.O.D.)
conditions if 𝑃train ≠ 𝑃test and 𝑃test is unknown during training.
The goal is to learn an optimal editing model F ∗

𝜃
on Dtrain that

generalizes effectively to the test data Dtest. This setting requires
F𝜃 to identify invariant patterns that capture stable relationships
between molecular structures and textual instructions, thereby en-
abling robust generalization under instruction and property shifts.

3 Method
In this section, we introduceMoFE, a molecular graph editing LLM
designed to enable robust generalization across unseen editing
objectives and instruction descriptions. We first present the overall
framework of MoFE (Section 3.1), followed by detailed descriptions
of its three key components: the Disentangled Graph Projector with
Invariance Loss (Section 3.2), the Factor-aware LoRA Mixture-of-
Experts (Section 3.3), and the Factor Disentanglement Loss Weighting
(Section 3.4). We conclude with the optimization procedure of our
method (Section 3.5).

3.1 Overall Framework
As illustrated in Figure 1, MoFE consists of three interacting com-
ponents that jointly address the challenge of out-of-distribution
molecule graph editing. Specifically, the Disentangled Graph Projec-
tor with Invariance Loss encodes each molecule graph into multiple
latent factors while ensuring consistency across paraphrased in-
structions. The Factor-aware LoRA Mixture-of-Experts enables mod-
ular editing by associating each LoRA expert with one latent factor.
The Factor Disentanglement Loss Weighting adaptively reweights
the supervision strength across experts, encouraging expert spe-
cialization and improving optimization stability.

These components form a coherent pipeline: the projector pro-
vides structured factor-level representations, the MoE module con-
ditions generation on them, and the loss weighting encourages
specialization and stability.

During inference, the input molecule graph is first processed by
the projector to produce a set of factor-specific graph tokens, which
are then inserted into the middle of the editing instruction token
sequence. This combined sequence is fed into the LLM, where a
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Figure 1: Overview of the proposed MoFE model. The model consists of three main components: (1) the Disentangled Graph
Projector with Invariance Loss extracts editing-relevant latent factors frommolecular graphs using cross-attention and enforces
semantic invariance via a variance-based objective across paraphrased instructions; (2) the Factor-aware LoRAMixture-of-Experts
LLM dynamically routes input tokens to factor-specific LoRA experts using a learned gating mechanism, enabling modular
and interpretable editing under diverse instruction-property combinations. (3) the Factor Disentanglement Loss Weighting
strategy reinforces expert-factor alignment by assigning higher supervision weights to expert-factor pairs that perform well
on relevant tasks, promoting joint disentanglement and stabilizing training.

gating mechanism selects the appropriate expert for each token.
Finally, the model outputs the edited molecule that satisfies the
specified editing objective.

3.2 Disentangled Graph Projector with
Invariance Loss

To uncover the latent factors governing structure-property rela-
tionships, we design a Disentangled Graph Projector that maps each
molecule graph into multiple semantically independent factors. The
Disentangled Graph Projector contains 𝐾 parallel GNN-based en-
coders, each dedicated to modeling one latent factor of molecular
editing. Given an input molecule graph, the 𝑘-th GNN outputs node-
level features 𝑍𝑘 = {𝒛𝑘,1, ..., 𝒛𝑘,𝑛}, which represent how each atom
contributes to the 𝑘-th factor. To obtain a fixed number of global
graph tokens, we aggregate them using cross-attention with 𝐵 learn-
able prototypes 𝑃𝑘 = [𝒑𝑘,1, ...,𝒑𝑘,𝐵]. The aggregated representation
of the 𝑘-th factor is computed as:

𝑃𝑘 = Attn(𝑃𝑘 , 𝑍𝑘 , 𝑍𝑘 ) (3)

The aggregated factor representations from all 𝐾 encoders are
concatenated and further projected by an MLP to yield the final

graph embedding:

𝐻graph =MLP( [𝑃1, ..., 𝑃𝐾 ]) (4)

The resulting𝐻graph serves as a sequence of graph tokens, which
are incorporated into the downstream LLM asmolecule-conditioned
inputs.

While the disentangled projection enforces factor separation, we
further observe that the same editing goal can often be expressed
through syntactically different instruction prompts. To make the
latent factors robust to such linguistic variations, we introduce
an Invariance Loss, which encourages consistent model behavior
across prompts describing the same objective.

Given 𝑁 semantically equivalent instruction prompts labeled
{𝑋1, 𝑋2, ..., 𝑋𝑁 }, each paired with the same molecule graph, the
Disentangled Graph Projector produces corresponding token se-
quences {𝐻1, 𝐻2, ..., 𝐻𝑁 }. These are then processed by the LLM
to compute their language modeling losses {L1,L2, ...,L𝑁 }. We
define the Invariance Loss as the variance of these losses:

Linv = Var(L1,L2, ...,L𝑁 ) (5)

This objective penalizes inconsistent model behavior across syn-
tactically or stylistically different prompts with the same intended
edit, forcing the model to focus on underlying semantics rather than
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superficial linguistic variation. Consequently, it improves both ro-
bustness to paraphrases and generalizability under instruction-level
distribution shifts.

Finally, each disentangled factor is pairedwith a distinct LoRA ex-
pert in the downstream Factor-aware LoRA MoE architecture. The
gating mechanism of the MoE ensures that experts collaboratively
contribute to the overall generation, implicitly enforcing each GNN
to provide complementary, non-redundant factor representations.
Together with the invariance constraint, this design encourages
structural and semantic disentanglement among factors.

3.3 Factor-aware LoRA MoE
The Disentangled Graph Projector extracts a set of latent factors
crucial to molecular editing, which are incorporated as contextual
tokens into the LLM input. These factor tokens provide rich contex-
tual information that should be effectively utilized during molecular
editing. To ensure robust generalization to unseen editing goals and
instruction phrasings, the model must treat all factors in a balanced
and interpretable way. Without explicit control, dominant factors
can overshadow weaker yet critical ones, resulting in biased adapta-
tion and incomplete utilization of latent semantics. To address this,
we design a Factor-aware LoRA MoE mechanism, which consists of
multiple LoRA experts. Each LoRA expert is paired with one specific
factor and processes it to support editing. This design enhances
factor disentanglement and enhances generalization by allowing
each expert to specialize in the adaptation behavior corresponding
to its assigned factor.

We begin with the standard LoRA formulation, where low-rank
adapters are introduced into the LLM’s feedforward or attention
layers. Given input hidden state 𝒉 ∈ R𝑑 , LoRA modifies the layer
output as:

LoRA(𝒉) =𝑊𝒉 + 𝛼𝐵𝐴𝒉 (6)
where𝑊 ∈ R𝑑×𝑑 is the original model weight, 𝐴 ∈ R𝑟×𝑑 and 𝐵 ∈
R𝑑×𝑟 are trainable low-rank matrices, and 𝛼 is a scaling coefficient.

To make the LoRA layer aware of factor information, we add
corresponding factor feature 𝑃𝑘 extracted by the graph projector
to 𝒉 with a learnable projection:

FactorLoRA(𝒉, 𝑃𝑘 ) =𝑊𝒉 + 𝛼𝐵𝐴(𝒉 +𝑊 ′Flatten(𝑃𝑘 )) (7)

where𝑊 ′ is a learnable projection matrix for the 𝑘-th factor.
To support diverse modeling of multiple latent factors, we ex-

tend this into a Mixture-of-Experts (MoE) setting. We maintain 𝐾
separate LoRA experts {(𝐴𝑘 , 𝐵𝑘 ,𝑊 ′

𝑘
)}, each associated with one

factor embedding. Given current hidden state 𝒉, a gating layer dy-
namically computes selection weights over these experts with a
learnable parameter matrix 𝐺 :

Gate(𝒉) = softmax(𝐺𝒉), 𝐺 ∈ R𝐾×𝑑 (8)

Each LoRA expert produces its output using FactorLoRA, which
are then summed together with gating weights as the final output:

MoELoRA(𝒉, 𝑃) =
𝐾∑︁
𝑘=1

Gate𝑘 (𝒉)FactorLoRA𝑘 (𝒉, 𝑃𝑘 ) (9)

where Gate𝑘 is the 𝑘-th output of the gating layer, and FactorLoRA𝑘
is the 𝑘-th factor-specific expert. This enables each token in the se-
quence to benefit from the most relevant factor-specific adaptation.

In practice, we apply this MoE LoRA specifically to the Feed-
Forward Network (FFN) modules of the LLM, while keeping the At-
tention modules equipped with standard LoRA layers. This balance
maintains model efficiency while ensuring factor-aware specializa-
tion where it matters most.

3.4 Factor Disentanglement Loss Weighting
To ensure that each expert effectively specializes in tasks associated
with its corresponding factor, we introduce a Factor Disentanglement
Loss Weighting strategy that promotes expert specialization. Our
proposed loss weighting strategy is designed to achieve two goals
simultaneously: first, to increase the gradient impact of experts
on tasks they are good at; and second, to ensure that all experts
are trained uniformly, so that their capabilities can be accurately
assessed and model collapse is avoided.

To assess the capability of each expert FactorLoRA𝑘 , we run a
forward pass of the model where the MoE routing is fixed to select
expert 𝑘 in all layers. Given a batch of 𝑁 inputs indexed by 𝑖 , we
compute their language modeling losses L𝑖,𝑘 when only expert 𝑘
is utilized. We define the weighting of expert 𝑘 for data point 𝑖 as:

𝑊𝑖,𝑘 = 1 + max(0, 𝜆(L̄𝑖 − L𝑖,𝑘 )) (10)

where L̄𝑖 is the average loss across all experts for input 𝑖 . This
encourages higher weights for experts that outperform the average.
Next, we normalize the weights for each expert 𝑘 across the batch:

𝑊 ′
𝑖,𝑘

=
𝑊𝑖,𝑘∑
𝑖′𝑊𝑖′,𝑘

(11)

This normalization guarantees that all experts are trained with
equal total amount of loss weighting. The final loss that will be
used to optimize expert 𝑘 becomes:

L𝑘 =
∑︁
𝑖

𝑊 ′
𝑖,𝑘
L𝑖,𝑘 (12)

This formulation ensures that each expert focuses on the samples
where it performs best, while also maintaining equal opportunity
for all experts to be evaluated.

3.5 Optimization Procedure
Training the MoFE framework involves balancing two objectives:
ensuring that each factor-specific expert learns disentangled rep-
resentations, and enabling effective collaboration among these ex-
perts through gating during inference. Directly optimizing the en-
tire Factor-aware LoRA MoE end-to-end from scratch can lead to
unstable convergence, as the gating network may prematurely dom-
inate the optimization before individual experts have sufficiently
specialized.

To address this issue, we adopt a two-stage training procedure
that separates expert specialization and collaborative fine-tuning.
We first pretrain each expert independently, and then fine-tune the
complete model with gating to enable coordinated expert collabo-
ration. The overall process is summarized in Algorithm 1 and 2.

Stage 1: Expert Pretraining with Disentanglement. In the first
stage, we independently pretrain each factor-specific expert us-
ing its corresponding latent factor, without gating or mixture. For
each latent factor 𝑃𝑘 , we pair it with its dedicated LoRA expert
FactorLoRA𝑘 and fix the expert routing to always select expert 𝑘 .
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Algorithm 1 Training Stage 1: Expert Pretraining with Disentan-
glement
1: Initialize graph projector with 𝐾 graph encoders, 𝐾 LoRA ex-

perts, and gating module
2: for each training batch do
3: for each factor 𝑘 = 1 to 𝐾 do
4: Compute the 𝑘-th factor representation 𝑃𝑘
5: Route tokens only through LoRA expert 𝑘
6: Compute language modeling loss L𝑖,𝑘
7: Sample paraphrased instructions {𝑋 (1) , . . . , 𝑋 (𝑁 ) } for

same target
8: Compute invariance loss

Linv,𝑘 = Var
(
LLM (𝑋 (1) ), . . . ,LLM (𝑋 (𝑁 ) )

)
9: end for
10: Compute mean loss L̄𝑖 = 1

𝐾

∑
𝑘 L𝑖,𝑘

11: for each factor 𝑘 = 1 to 𝐾 do
12: Compute sample-level weights𝑊𝑖,𝑘 = 1 + max(0, 𝜆(L̄𝑖 −

L𝑖,𝑘 ))
13: Normalize across batch:𝑊 ′

𝑖,𝑘
=

𝑊𝑖,𝑘∑
𝑖′𝑊𝑖′,𝑘

14: Expert loss: L𝑘 =
∑
𝑖𝑊

′
𝑖,𝑘
L𝑖,𝑘

15: end for
16: Total loss for Stage 1: LStage 1 =

∑
𝑘 L𝑘 + 𝜆inv

∑
𝑘 Linv,𝑘

17: Update graph projector and LoRA experts using LStage 1
18: end for

Each training instance is processed using this fixed factor-expert
pair, and the overall loss for expert 𝑘 is computed by combining the
language modeling loss L𝑘 and the invariance loss Linv, weighted
by the Factor Disentanglement Loss Weighting strategy described
in Section 3.4. The total pretraining loss is:

Lpretrain =

𝐾∑︁
𝑘=1

L𝑘 + 𝜆invLinv (13)

Here, L𝑘 is the weighted expert loss for factor 𝑘 , and 𝜆inv is a
hyperparameter controlling the contribution of the invariance loss.

Stage 2: MoE Fine-tuning with Gating. In the second stage, we en-
able the full Factor-aware LoRA MoE architecture by activating the
gating network. All factor experts are simultaneously available, and
token representations are passed through the mixture-of-experts
layers with gating as defined in Section 3.3. During this phase, we
optimize the entire MoEmodule end-to-end using only the standard
language modeling loss:

LMoE = LLM (14)

The gating parameters and LoRA experts are jointly optimized
in this stage, while the disentangled graph projector is frozen. This
two-phase approach allows experts to first specialize independently
and then collaboratively contribute to instruction-conditionedmolec-
ular editing under factor-aware modularization.

4 Experiments
We evaluate the proposedMoFE framework through comprehensive
experiments. Section 4.1 describes the experimental setup, while
Section 4.2 and Section 4.3 report results on I.D. and O.O.D. tasks,

Algorithm 2 Training Stage 2: MoE Fine-tuning with Gating
1: Freeze graph projector; enable all experts and gating network
2: for each training batch do
3: Compute 𝐾 factor embeddings {𝑃𝑘 }𝐾𝑘=1 from projector
4: For each LLM layer with MoE, apply gating: Gate𝑖 =

softmax(𝐺𝒉𝑖 )
5: Combine expert outputs weighted by Gate𝑖
6: Compute standard language modeling loss LLM
7: Backpropagate and update LoRA experts and gating param-

eters
8: end for

respectively. Ablation studies are presented in Section 4.4 to assess
the contribution of each component.

4.1 Experimental Setup
Dataset. To evaluate our model’s generalization ability, we adopt

the MuMOInstruct dataset [7], a large-scale benchmark built on
property optimization tasks with paired natural language instruc-
tions.MuMOInstruct definesmulti-propertymolecular editing tasks
based on six fundamental molecular properties:
• BBBP (Blood-brain barrier permeability): Measureswhether
a molecule can cross the blood-brain barrier, which is essential
for designing drugs targeting the central nervous system.

• DRD2 (Dopamine receptor binding affinity): Assesses the
molecule’s affinity for binding to the dopamine receptor D2,
important in neurological drug development.

• HIA (Human intestinal absorption): Indicates the probabil-
ity that amolecule can be absorbed through the human intestine,
critical for oral bioavailability.

• Mutag (Mutagenicity): Represents the potential of a com-
pound to cause genetic mutations, with lower values being
safer and more desirable in drug candidates.

• plogP (Penalized octanol-water partition coefficient): Com-
bines the logP value (lipophilicity) with synthetic accessibility
and structural penalties, balancing hydrophobicity with drug-
likeness and synthesis complexity.

• QED (Quantitative estimate of drug-likeness): A compos-
ite score evaluating how “drug-like” a compound is based on
multiple pharmacological properties.
Each task involves modifying a molecule so that it satisfies a

specific combination of property constraints, such as “increase QED
while decreasing mutagenicity”. Task names correspond to the
target property combinations (e.g., “BDP” for BBBP+DRD2+plogP).
Following [7], each model is trained on multiple training tasks, and
evaluated in three settings:
• In-distribution (I.D.) tasks: Tasks that use both property
combinations and instruction formulations observed during
training.

• Seen Tasks with Unseen Instructions (O.O.D.): Tasks with
property combinations seen during training but paired with
paraphrased instructions not used during training, evaluating
instruction-level generalization.

• Unseen Tasks (O.O.D.): Tasks composed of novel property
combinations (not seen in training) but using instruction styles
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Table 1: Overall Performance in in-distribution (I.D.) Tasks. SR denotes the success rate; Sim denotes the molecular structure
similarity between generated and original molecules; RI denotes relative property improvement (computed on successful edits).
All metrics are averaged over each in-distribution task. ↑ indicates higher is better; Bold highlights the best score within each
model category (General Models / Molecule Editing Models), and underline highlights the second-best score.

Model BDP BDQ BPQ DPQ BDPQ

SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑
General Models
Mistral (0-shot) 6.60 0.81 0.68 3.00 0.76 0.53 15.80 0.73 0.51 2.20 0.65 0.41 3.20 0.77 0.87
Llama (0-shot) 22.00 0.73 0.74 2.20 0.64 0.53 28.40 0.64 0.72 2.60 0.62 0.32 5.20 0.80 0.62
Claude-3.5 (0-shot) 19.60 0.66 1.05 13.00 0.62 1.14 56.00 0.62 0.86 11.00 0.54 0.51 8.00 0.60 1.34
Mistral (5-shot) 35.20 0.64 2.10 17.00 0.60 2.32 68.60 0.63 0.79 10.40 0.54 1.10 11.00 0.69 0.96
Llama (5-shot) 35.40 0.57 2.71 16.60 0.43 5.70 34.60 0.70 0.64 8.20 0.44 3.02 9.60 0.54 3.45
Claude-3.5 (5-shot) 35.40 0.50 2.43 29.40 0.43 3.80 76.80 0.53 1.24 29.20 0.37 2.87 20.80 0.35 3.53
LlaSMolMistral 43.60 0.62 1.09 31.40 0.66 0.93 86.00 0.58 0.84 24.00 0.57 0.61 14.00 0.62 1.03

Molecule Editing Models
ChatDrug 24.20 0.60 5.74 24.60 0.60 3.59 13.00 0.61 1.09 19.60 0.56 5.39 25.20 0.64 2.93
GeLLM3O 77.00 0.53 3.73 79.60 0.56 5.05 95.00 0.47 1.66 57.00 0.49 2.50 52.20 0.49 3.48
Ours 87.00 0.58 3.34 85.20 0.60 4.33 97.00 0.55 1.38 64.40 0.55 1.87 59.00 0.51 3.28

observed during training, assessing generalization to new opti-
mization objectives.

Baselines. We compare our method with the following baselines:

• General-purpose models [11]: General-purpose LLMs (not
specifically designed for molecule editing) including Mistral-7B
Instruct-v0.3[11], Llama-3.1 8B Instruct[9], Claude-3.5[2], and
LlaSMol tuned on Mistral-7B[25]. We follow the settings of [7]
for these baselines.

• ChatDrug [15]: A conversational LLM framework for drug
editing that integrates prompt engineering, retrieval-based do-
main feedback, and multi-round interaction. We evaluate the
Llama2-based variant of ChatDrug in our experiments.

• GeLLM3O [7]: Instruction-tuned LLMs specifically designed for
multi-property molecule optimization using the MuMOInstruct
dataset. We adopt the generalist version GeLLM3O-P(6)Llama,
which is fine-tuned on all combinations of six core molecular
properties and built upon Llama3.1-8B with LoRA adapters.
This choice ensures a fair comparison with our method, as both
are based on Llama and trained on the same multi-property
editing benchmark.

Evaluation Metrics. We follow prior work [7] and evaluate mole-
cule editing quality using three metrics:

• Success Rate (SR): The percentage of edited molecules that
satisfy all desired property constraints. A higher SR indicates
better controllability and task completion accuracy.

• Similarity (Sim): The average Tanimoto similarity [3] between
the editedmolecule and the input molecule, computed overMor-
gan fingerprints. A higher similarity suggests that the model
preserves the core molecular structure while making minimal
necessary changes.

• Relative Improvement (RI): The average improvement of
each optimized property relative to its initial score in the input

molecule. Higher RI values indicate more significant property
enhancement on successfully edited molecules.
Among these, SR serves as the primary indicator of editing

performance. High similarity with low SR often reflects trivial or
overly conservative edits, whereas high RI with low SR suggests
unstable editing behavior, since RI is computed only over successful
edits. Therefore, SR best captures whether the model performs con-
trolled and effective edits that truly achieve the intended molecular
transformations.

4.2 In-distribution (I.D.) Task Results
To evaluate the in-distribution performance of our model, we com-
pare it against both general-purpose LLMs and molecule editing-
specific baselines across five multi-property editing tasks. As shown
in Table 1, our method consistently achieves the highest success
rates (SR) among molecule editing models, while maintaining com-
petitive molecular similarity (Sim) and solid relative property im-
provement (RI), indicating that our model has good performance
on in-distribution molecule editing tasks.

We also observe that, although ChatDrug and some general-
purpose models yield slightly higher Sim in some tasks, their suc-
cess rates are substantially lower. This indicates that high similarity
alone does not imply successful or meaningful molecular edits, as
such results may arise from conservative modifications that leave
the molecule largely unchanged. In contrast, our model achieves a
balanced performance across SR, Sim, and RI, suggesting that it not
only meets the editing objectives more frequently but also generates
chemically reasonable and property-improving molecules. Overall,
these results confirm the strong in-distribution editing capability
of our method.

4.3 Out-of-distribution (O.O.D.) Task Results
We further evaluate the generalization ability of our model through
two O.O.D. settings: (1) unseen tasks with seen instructions, and
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Table 2: Overall performance in unseen tasks (O.O.D.) with seen instructions. SR denotes the success rate; Sim denotes the
molecular structure similarity between generated and original molecules; RI denotes relative property improvement (computed
on successful edits). All metrics are averaged over each O.O.D. task. ↑ indicates higher is better; Bold highlights the best score
within each model category (General Models / Molecule Editing Models), and underline highlights the second-best score.

Model MPQ BDMQ BHMQ BMPQ HMPQ

SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑
General Models
Mistral (0-shot) 11.20 0.57 0.48 1.20 0.68 0.37 12.71 0.73 1.90 12.57 0.61 0.54 21.88 0.72 0.72
Llama (0-shot) 25.80 0.44 0.61 1.20 0.76 0.30 11.02 0.74 0.68 16.75 0.51 0.57 15.62 0.47 0.60
Claude-3.5 (0-shot) 17.40 0.49 0.52 15.00 0.57 0.87 38.98 0.51 2.35 44.50 0.55 0.85 38.54 0.54 1.01
Mistral (5-shot) 59.60 0.54 0.57 20.40 0.59 1.65 34.75 0.70 1.31 49.21 0.62 0.73 46.88 0.66 0.91
Llama (5-shot) 34.80 0.57 0.53 16.80 0.39 3.22 36.44 0.67 1.13 31.94 0.66 0.60 33.33 0.68 0.61
Claude-3.5 (5-shot) 50.60 0.49 0.71 30.40 0.49 2.32 52.54 0.48 2.52 52.36 0.46 1.08 65.62 0.48 1.32
LlaSMolMistral 76.40 0.55 0.53 28.20 0.66 0.52 53.39 0.62 1.14 64.92 0.58 0.57 53.12 0.62 0.70

Molecule Editing Models
ChatDrug 19.60 0.60 1.21 24.00 0.66 3.22 27.24 0.60 0.54 25.31 0.64 4.57 29.58 0.61 1.24
GeLLM3O 93.60 0.48 0.91 74.20 0.55 3.25 93.22 0.49 3.57 95.29 0.49 1.20 97.92 0.46 1.76
Ours 94.80 0.55 0.81 80.60 0.55 3.32 94.92 0.55 2.91 95.29 0.55 1.37 96.88 0.53 1.34

Table 3: Overall performance in seen tasks with unseen instructions (O.O.D.). SR denotes the success rate; Sim denotes the
molecular structure similarity between generated and original molecules; RI denotes relative property improvement (computed
on successful edits). All metrics are averaged over each O.O.D. task. ↑ indicates higher is better; Bold highlights the best score in
unseen instructions tasks, and underline highlights the second-best score.

Model Instr
BDP BDQ BPQ DPQ BDPQ

SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑ SR↑ Sim↑ RI↑

ChatDrug seen 24.20 0.60 5.74 24.60 0.60 5.32 13.00 0.61 1.09 19.60 0.56 5.39 25.20 0.64 2.93
unseen 20.00 0.63 5.26 23.20 0.56 3.59 14.60 0.57 1.14 22.00 0.61 2.96 21.40 0.63 3.45

GeLLM3O seen 77.00 0.53 3.73 79.60 0.56 5.05 95.00 0.47 1.66 57.00 0.49 2.50 52.20 0.49 3.48
unseen 64.60 0.53 3.06 73.40 0.57 4.56 95.60 0.47 1.66 53.60 0.48 2.15 46.40 0.48 3.52

Ours seen 87.00 0.58 3.34 85.20 0.60 4.33 97.00 0.55 1.38 64.40 0.55 1.87 59.00 0.51 3.28
unseen 83.20 0.55 3.27 84.40 0.58 4.33 96.00 0.53 1.51 58.60 0.53 2.37 57.00 0.50 3.37

(2) seen tasks with unseen instructions. These experiments test
the model’s robustness to new property objectives and linguistic
variations.

4.3.1 Unseen Tasks with Seen Instructions. To assess the general-
ization ability of our model, we evaluate it on editing tasks involv-
ing novel combinations of molecular properties not seen during
training. As shown in Table 2, our model achieves consistent and
significant improvements over both general-purpose LLMs and
molecule editing baselines.

Specifically, our method achieves the best SR on most O.O.D.
tasks, demonstrating its robust generalization to unseen optimiza-
tion objectives. Meanwhile, it maintains competitive Sim and strong
RI scores, achieving a favorable balance between structural fidelity
and property optimization. In contrast, ChatDrug has high similar-
ity but suffers from low SR. Overall, the superior performance of
MoFE across all O.O.D. tasks shows that our disentangled, factor-
aware editing framework can generalize to unseen molecular objec-
tives, while still performing faithful and minimal structural changes.

4.3.2 Seen Tasks with Unseen Instructions. To evaluate the robust-
ness of our model against natural language variation, we test it on
seen property objectives with paraphrased instructions.

As shown in Table 3, our method has competitive SR and simi-
larity in tasks with unseen instructions, demonstrating its ability
to generalize to varied task instructions. Furthermore, our method
shows strong resilience to unseen instructions, achieving a lower
overall performance drop in the success rate from seen instruc-
tions to unseen instructions compared to GeLLM3O. ChatDrug, as
a training-free method, shows relatively stable performance be-
tween seen and unseen instruction settings, but its overall success
rates remain substantially lower across all tasks, suggesting that
the lack of targeted training limits its ability to perform complex,
property-specific edits.

These results suggest that MoFE effectively captures instruction-
invariant semantics, benefiting from its use of invariance loss and
disentangled graph representations. This makes it more robust to
paraphrased inputs and improves usability in real-world settings.
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Table 4: Ablation study on O.O.D. tasks. SR denotes the success rate; Sim denotes the molecular structure similarity between
generated and original molecules; RI denotes relative property improvement (computed on successful edits). All averaged over
all O.O.D. tasks. “Full MoFE” refers to the complete model, while other rows indicate variants with one core module removed.

Model Variant SR (O.O.D. Avg)↑ Sim (O.O.D. Avg)↑ RI (O.O.D. Avg)↑

Full MoFE (Ours) 84.17 0.54 2.46
w/o Graph Projector (no factor) 78.90 0.51 2.38
Shared LoRA (no MoE) 80.26 0.52 2.52
w/o Loss Weighting 82.12 0.52 2.43

4.4 Ablation Study
To evaluate the contribution of each component in our proposed
MoFE model, we conduct an ablation study under O.O.D. settings.
We report the average metrics over all O.O.D. editing tasks.

As shown in Table 4, each module contributes significantly to the
overall performance. Removing the disentangled graph projector,
which extracts disentangled editing-relevant factors, results in the
largest drop in SR, confirming the necessity of modeling editing-
relevant structural factors. Replacing the factor-aware MoE with a
shared LoRA leads to a decrease in both SR and Sim, indicating that
expert specialization is essential for adapting to diverse instructions.
Disabling the loss weighting strategy also reduces performance,
showing its role in guiding expert–factor alignment and reducing
training interference. Overall, these results demonstrate that all
three modules jointly contribute to the robust generalization of
MoFE under distribution shifts.

5 Related Work
Molecule Editing.Molecule editing aims to modify molecule

structures to satisfy desired properties while preserving key scaf-
folds [10, 17]. It plays a central role in drug discovery, where edits
may enhance solubility, reduce toxicity, or improve binding affin-
ity and so on. Traditional approaches typically rely on rule-based
fragment modifications or property heuristics [10, 17]. While in-
terpretable, these methods often lack scalability and struggle with
multi-objective optimization. Recent work introduces multi-modal
molecule structure–text models. MoleculeSTM [14] aligns textual
descriptions with 2D molecular structures via contrastive learn-
ing, enabling zero-shot molecule editing and retrieval. Building on
this, MoleculeSTM-3D [13] incorporates 3D molecular conforma-
tions and aligns them with natural language using a geometry-text
contrastive framework. More recently, ChatDrug [15] proposes
a conversational framework for drug editing using LLMs. It inte-
grates prompt design, retrieval, and domain feedback with inter-
active editing to support small molecules, peptides, and proteins.
Through utilizing MuMOInstruct, a large-scale instruction-tuning
dataset tailored to complex multi-property molecule optimization,
GeLLM3O [7] introduces a series of instruction-tuned LLMs for mol-
ecule optimization. Our method focuses on the challenging setting
of O.O.D. generalization in multi-property molecule optimization.

Large language Models on Molecule Graphs. Large Lan-
guage Models (LLMs) have recently been extended to the molecular
graph [5, 12, 16, 18, 19, 27, 28], where molecules are represented as
graphs of atoms and bonds. By integrating the structured topology

of molecular graphs with rich textual knowledge, LLMs can im-
prove the understanding, generation, and prediction of molecular
properties. GIMLET[28] is a unified graph-text model designed for
instruction-based zero-shot learning, which encodes both molec-
ular graphs and task instructions without separate GNN modules
and decouples encoding of the graph from tasks instructions in the
attention mechanism. LLaMo[18] introduces a multi-level graph
projector that transforms molecular graphs into language-aligned
tokens, enabling end-to-end molecule-language understanding. It
uses machine-generated molecular dialogues to instruction-tune
LLMs and achieves state-of-the-art performance in tasks like prop-
erty prediction and molecule captioning.

LoRA Mixture-of-Experts. LoRA Mixture-of-Experts [4, 8, 20,
22, 26] combines the efficiency of Low-Rank Adaptation with the
flexibility of Mixture-of-Experts. It enables modular, parameter-
efficient fine-tuning while adapting to diverse tasks. MOLE [22]
proposes a hierarchical gating mechanism to dynamically com-
bine LoRA experts per layer. LoRAMoE [8] addresses catastrophic
forgetting by freezing the basemodel and routingworld-knowledge-
preserving LoRAs for instruction tuning. MixLoRA [20] extends
LoRA to multimodal instruction tuning by dynamically selecting
LoRA modules per instance. These works demonstrate LoRAMoE’s
effectiveness across NLP and multimodal tasks. Our work further
explores its application to molecule editing, aiming to enhance
structure-aware generation via modular adaptation.

6 Conclusion
In this work, we propose MoFE, a large language model framework
for instruction-guided molecule graph editing under O.O.D. scenar-
ios. To tackle the challenges of generalizing to unseen instructions,
we introduce a modular architecture with three key components: a
Disentangled Graph Projector with Invariance Loss, a Factor-aware
LoRA Mixture-of-Experts module, and a Factor Disentanglement
Loss Weighting strategy. Together, these components allow the
model to extract stable editing-relevant factors, support flexible
and specialized adaptation, and promote robust generalization. Ex-
perimental results on the MuMOInstruct benchmark demonstrate
that MoFE achieves strong performance on both I.D. and O.O.D.
molecule editing tasks, outperforming existing baselines.
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A Training and Implementation Details
A.1 Training Details
We adopt a two-stage training strategy to effectively optimize the
proposed MoFE architecture. In Stage 1, we pretrain each factor-
specific LoRA expert independently using its associated graph latent
representation, without gating. This encourages each expert to
specialize in a disentangled editing-relevant factor. In Stage 2, we
enable the full mixture-of-experts (MoE) architecture, including
the gating mechanism, and fine-tune the model in an end-to-end
manner.

During both stages, the base LLM remains frozen to ensure pa-
rameter efficiency and stability. Stage 1 emphasizes expert disentan-
glement through factor-specific routing and loss weighting, while
Stage 2 learns to dynamically compose experts based on token-level
gating.

A.2 Implementation Details
We provide key implementation details for reproducibility here.
Our backbone model is Llama-3.1-8B-Instruct. The LoRA layers are
created with 𝑟 = 4 and alpha = 32. Standard LoRA modules are
applied to𝑄 and𝑉 projection weights in attention layers, while our
proposed MoE LoRA modules are applied to feedforward layers.
The graph projector comprises 𝐾 independent GIN graph encoders.
The number of factors is set to 𝐾 = 4 in the experiments.

We optimize the model using AdamW with a batch size of 64.
The learning rates are 2 × 10−5 for the LLM and 1 × 10−4 for the
GNN projector. Stage 1 and Stage 2 are trained for 1 and 2 epochs,
respectively. All experiments are conducted using 4 NVIDIA A100
GPUs (40GB).
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Table 5: Task information

Type Task #Train #Val #Test #Mols Properties

In-distribution (I.D.)

BDP 2,064 230 500 2,449 BBBP, DRD2, plogP
BDQ 4,472 497 500 4,614 BBBP, DRD2, QED
BPQ 4,048 450 500 6,953 BBBP, plogP, QED
DPQ 2,114 235 500 2,589 DRD2, plogP, QED
BDPQ 624 70 500 802 BBBP, DRD2, plogP, QED

Out-of-distribution (O.O.D.)

MPQ 3,132 349 500 5,384 Mutag, plogP, QED
BDMQ 601 67 500 791 BBBP, DRD2, Mutag, QED
BHMQ 191 22 118 333 BBBP, HIA, Mutag, QED
BMPQ 373 42 191 690 BBBP, Mutag, plogP, QED
HMPQ 234 26 96 417 HIA, Mutag, plogP, QED

Table 6: Additional baselines on multi-property optimization tasks. Higher is better for SR and Sim.

Model BDP (SR↑/Sim↑) BDQ (SR↑/Sim↑) BPQ (SR↑/Sim↑) DPQ (SR↑/Sim↑) BDPQ (SR↑/Sim↑)
GPT-o4-mini 32.20/0.58 22.80/0.63 58.00/0.67 14.20/0.55 6.60/0.42
LLaMo 8.03/0.62 2.94/0.42 20.49/0.47 0.76/0.80 0.00/nan

Table 7: Results on OpenMolIns-large. Higher is better for SR and Sim.

Model AddComponent (SR/Sim) DelComponent (SR/Sim) SubComponent (SR/Sim)

Llama3.1-8B (OpenMolIns-large) 58.22/0.65 51.04/0.51 54.40/0.63
Ours (OpenMolIns-large) 70.60/0.68 83.88/0.62 59.32/0.74

Table 8: Results on MolOpt-Instructions. Higher is better for SR and Valid.

Model QED (SR/Valid) BBBP (SR/Valid)

DrugAssist (MolOpt-Instructions) 0.76/0.99 0.82/0.99
Ours 0.85/1.00 0.99/1.00

Table 9: Sensitivity analysis on the number of latent factors
𝐾 .

𝐾 (factors) SR (Avg) Sim (Avg)

2 79.20 0.60
4 82.29 0.55
6 80.00 0.53

MoFE is trained in about 1.5 days on 4×A100 GPUs. The memory
footprint is very close to the baseline, indicating that the added
modules introduce no noticeable overhead.

B Theoretical Discussion on Invariance Loss
The proposed invariance loss enforces consistent behavior across
paraphrased instructions sharing the same editing goal. This design
is rooted in the principle that the model should behave similarly
for inputs with equivalent intent.

Formally, letXeq = {𝑋1, 𝑋2, ..., 𝑋𝑁 } be a set of instruction prompts
expressing the same desired molecular transformation, and let

𝐻 (𝑋𝑖 ) be the latent token representation after conditioning on
the graph. Then, the expected language modeling loss is:

E𝑋 ∈Xeq [LLM (𝑋 )]
To ensure consistency across variants, we minimize the empirical
variance:

Linv = Var (LLM (𝑋1), . . . ,LLM (𝑋𝑁 ))
This encourages the model to learn representations invariant to
linguistic variation, forcing attention to stable structural-property
patterns encoded in the graph tokens. In practice, this helps mitigate
overfitting to prompt phrasing and improves robustness in unseen
instruction forms.

C Dataset Details
Dataset Split. We adopt the MuMOInstruct benchmark, which

includes over 1.2M (molecule, instruction)–edit pairs across six
key drug-relevant properties: BBBP, DRD2, HIA, Mutag, QED, and
plogP. We use the official train/validation/test splits. Refer to Table
5 for more information about the tasks.
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D Additional Experimental Results
D.1 Comparison with more baselines
We additionally include results of GPT-o4-mini and LLaMo on
MuMOInstruct for comparison. Both perform poorly: GPT-o4-mini
lacks molecular reasoning capability in this setting, while LLaMo
is designed for molecule understanding rather than multi-property
optimization.

D.2 Results on more datasets
We further evaluate on MolOpt-Instructions and OpenMolIns, two
datasets on instruction-guided molecule editing.

On OpenMolIns, both models are fine-tuned on the large-scale
split, and MoFE outperforms the baseline (Llama3.1-8B) across
editing tasks on both SR and Sim scores (Table 7).

On MolOpt-Instructions, since the dataset has overlapping tasks
with MuMOInstruct, we perform direct inference on these tasks
using our trained model, yielding higher SR and Valid than the base-
line (Table 8) and confirming its consistent advantage in instruction-
guided molecule editing tasks.

D.3 Hyperparameter Sensitivity
Here we provide a sensitivity analysis on the number of latent
factors 𝐾 . Table 9 shows that 𝐾 = 4 achieves the best balance
between success rate and similarity.
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